Note: this article first appeared in Global AgInvesting on June 10, 2019 globalaginvesting.com. This is the third article of an eight-part series published by GAI News that will examine how the global food system is set to be altered by eight existing trends. Each month a new installment will be released. Click the following links to read the first two installments: Part I and Part II
Primary authors: Jeremy Stroud, Bonnefield, Agricultural Investment Analyst, and Michael DeSa of AGD Consulting
“In all affairs it’s a healthy thing now and then to hang a question mark on the things you have long taken for granted.” – Bertrand Russell
There is every reason for us as consumers to pause and consider something that is far too often taken for granted – water. It has become a truism to say that civilization would not exist without the reliability of our earth’s accessible water resources. Our species’ ability to evolve past a Paleolithic state is a direct result of our advances in freshwater use, from leveraging gravity for flood irrigation to controlling water flow with aqueducts to the implementation of digitally integrated irrigation systems.
Societal reliance on fresh water has been presupposed for so many centuries that many of us overlook the ongoing constraints set to fundamentally alter the way we use this scarce resource. This article aims to review a few of the many water challenges affecting the global agri-food sector and places a spotlight on investable regions which may weather the storm most effectively.
When assessing freshwater availability, it is essential to consider the components of the water system within and beyond human control. The thought of addressing all water challenges may be an overwhelmingly broad topic, so the conversation becomes more actionable when we focus on components that can be changed rather than those that cannot. Of freshwater stores, ‘blue water’ is the most pertinent topic to international agriculture as we have little control over deviation in rainwater occurrence and quantity. Water scientists place particular emphasis on blue water within the context of a changing climate – namely as it pertains to projected increases in the frequency and severity of global drought [1].
Common Freshwater Classification [2]
Less than three percent of the earth’s total water stock is fresh water and nearly four-fifths of the three percent are permanently frozen and inaccessible[3]. After factoring in areas of excessive pollution, acidity and salinization we are left with less than one-tenth of a percent of fresh water supply available for human, agriculture and industry use[4]. In other words, this equates to about 10,000,000 cubic km of fresh, accessible ground and surface water[5]. While freshwater is limited in volume, humans are continuing to increase consumption per capita on an annual basis,[6] and at a pace that far exceeds the rate of replenishment.[7] Here lies the bone of contention. It is not a question of whether we are using scarce water resources at an unsustainable pace, but rather a discussion of what can be done about it.
Blue Water – Consumable and Irrigatable
Water use for irrigation is among the most heavily contested aspects of the modern agricultural system. Agriculture and blue water depletion are inextricably linked. According to a recent report from IPBES, nearly 75 percent of the world’s accessible freshwater consumption is dedicated to crop and livestock production and nearly 40 percent of the planet’s current food supply is reliant on irrigation [8]. This issue becomes further pronounced when we consider that nearly half of the world’s population is living within immediate proximity to river basins and aquifers with the ‘severe water stress’ classification [9]. Evidence suggests that over-usage and maltreatment of accessible freshwater resources could cause a contraction in global productivity growth and therefore a potential decline in living standards [10].
Most of our planet’s accessible fresh water is confined in shallow aquifers beneath the earth’s surface. A high proportion of these non-renewable aquifers are reaching critical points of depletion, and they are commonly located in areas which fall beneath the world’s most populous and important agricultural regions. A study from the Proceedings of the National Academy of Science estimates that up to 100 million irrigated acres may be unable to draw sufficient water resources to support production by the end of the century[11]. This could lead to drastic decreases in crop yields if rainfall averages cannot make up the difference. The Ogallala aquifer beneath the US corn belt, for example, is particularly threatened by overuse and pollutant contamination. A reversal of irrigated land to dryland is expected to occur in regions such as California’s central valleys, the US Mid-West, the North-China Plain, and the Arabian Basin. In each of these regions non-renewable groundwater is a primary source of irrigation. It is not coincidental that each of these regions have been subject to significant water stress in the past decade.
Blue water depletion is a complex issue that demands collective action – not solvable by implementing any single policy, action or framework, but rather it requires a cooperation between all levels of business, government and society. Irrigated farms which source their water from continually measured, renewable deposits (such as sustainably disbursed lakes and river systems) may be the most productive, economical and sustainable solution to the forthcoming water scarcity challenges.
Virtual Water
Consumers may look at food-induced water depletion as a direct product of farm activity, while the reality more complex and integrates all facets of society. Farmers, like any other business, are economic entities that aim to optimize output, scale and profitability. In the agri-food sector this is accomplished by efficiently fulfilling the needs of consumers. With a growing population and an increasing appetite for high-quality proteins, fruits and vegetables, consumers tend not to realize the macro-effects of their individual purchasing decisions but rather focus on the needs of the household or community.
As it stands, we have a developed consumer base that is unaware that we effectively outsource water depletion through our demand for high water-footprint foods[12]. An often cited example is China’s import of water-intensive soybeans from areas such as Brazil which has led to indirect pressure on deforestation of the Amazon[13]. We have historically been able to purchase food and industrial products with the cost of water extraction embedded in the price, but often not the true cost of water depletion. This distinction is vital to the topic of global water management, where governments often subsidize industry water use as a regular cost of doing business in order to provide consumers with food options that meet their demands.
Most experts believe these consumer trends towards high-footprint foods are firmly established, although as shoppers begin to realize the increased demands on water a result of their decisions, they too may begin to search for more sustainable and renewable ways to use the available water supply. It is here where we see a long-term investable opportunity.
Farmland Investing: Go Where the Renewable Water Flows
The pursuit of a sustainable and profitable agricultural investment portfolio may be achieved through consideration of macro-climatic indicators, strategic selection and rigorous due diligence. While this article refers to agricultural investing from a farmland perspective, there is also a case to be made for investments in agricultural technology, including efficient irrigation, wastewater reuse, soil moisture sensing and seed resilience technologies.
A structural decline in crop production is expected to create supply shocks in the future, potentially raising agricultural commodity prices in the long term. The Intergovernmental Panel on Climate Change (IPCC) estimates that crop yields could decline by up to 12 percent as a consequence of water scarcity in the next three decades [14]. The thesis of investing in ‘water-rich’ regions is predicated upon their capacity to weather an incoming storm of potential water issues:
~ Invest where irrigation is less necessary for productive agriculture: Less than four percent of Canada, Brazil, Russia and Australia’s farmland is irrigated compared to about ten percent in the United States and 37 percent in India [15] (See Figure 2). Productive agricultural regions that are less dependent on irrigation tend to hedge the risk of groundwater depletion and/or pollution.
Figure 2: Percentage of Farmland Under Irrigation [16]
Source: The World Bank World Development Indicators, 2015
~ Analyze metrics to determine where water shortages are expected to fall: Statistics such as renewable fresh water per capita are helpful in determining where water crises are expected to occur. Other helpful statistics include aquifer replenishment rates, variable on-farm water requirements, and the legal parameters of water resource allocation. While Canada, Russia, Australia, and Brazil use relatively little water for irrigation compared to the rest of the world, they hold the most fresh water reserves per capita of all agricultural exporters with 80,200 cubic meters [17]. Further projections suggest that warm-climate regions are likely to experience decreasing precipitation levels in the next century while polar and continental regions may encounter more rainfall [18]. Although each country’s water rights laws and natural precipitation levels may vary, the thesis holds over a long-term geographic perspective while political frameworks may change. This sentiment should be further examined at a regional level to assess where irrigating farmland may be achieved most sustainably.
Figure 3: Global Freshwater Resources per Capita [19]
Source: The World Bank, 2014
For as long as humans inhabit the planet, unpolluted, fresh, water will be a finite resource with limited supply and consistent demand. Although specific water reserves appear to have promise over the next several decades, it is a responsibility for farm owners, governments, consumers, and investors to responsibly regulate withdrawal and avert contamination. Freshwater depletion is an agricultural issue just as much as it is an environmental one. Here lies a rare circumstance where economic returns may be matched by environmental impact. Agricultural investors have a distinct opportunity to allocate capital towards efficient irrigation and farmland portfolios in regions that have the replenishing capacity to withdraw water resources sustainably.
Note: this article first appeared in Global AgInvesting on April 23, 2019 globalaginvesting.com. This is the second article of a series published by GAI News. The first installment can be found here. The eight-part series will examine how the global food system is set to be altered by eight existing trends.
Primary author: Jeremy Stroud, Bonnefield, Agricultural Investment Analyst
Contributing author: Michael DeSa, AGD Consulting
“The nation that destroys its soil destroys itself.” – F.D. Roosevelt
The oft-imagined idea of fertile, pristine farmland as far as the eye can see is drifting towards the past. Land loss is more than just a blow to those who grasp on to a pastoral ideal of the countryside; rather it marks a shift in the global supply dynamics of land resources. The literature presents a singular case: more topsoil is removed from production than is added, with some academics estimating a reduction of about 1 percent each year[1].
Healthy topsoil is home to billions of thriving micro-organisms which allow crops to be optimally produced. As the top soil is physically eroded or disrupted, its biological matter also declines, and therefore its capacity to produce optimal yields is compromised.
Land scarcity is not a new concept, although with the level of impact it is expected to have on society, it is a topic that deserves more discussion. In the first article of this series, we discussed the effects of urbanization on the global agricultural system. This commentary will examine another piece of the farmland usage puzzle and its impact on our collective accessibility to food: land degradation and soil erosion.
Land degradation refers to human-derived processes which lead to the decline in ecosystem functions[2]. It manifests itself in three different forms:
physical: compaction, desertification, and soil erosion (which is the largest contributor to productivity loss)
chemical: soil acidification and salinization
biological: soil organic matter reduction and loss in biodiversity
Farmers work in different ways to combat chemical and biological forms of land degradation, although the most persistent and arguably the most difficult to mitigate of these, is physical degradation of topsoil. While usually considered as a local concern, soil erosion, compaction and other types of land degradation are globally consequential issues and evidence suggests they will have direct implications for the world’s food supply.
The Inter-Governmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) is widely considered the international authority on bio-ecological matters[3]. The organization recently concluded a three-year study analyzing the status of global land and soil quality, which collected insights from over one hundred of the world’s leading subject experts. They found that approximately 3.2 billion people, or nearly 43 percent of the world’s population, experience negative economic impacts from land degradation in industries varying from agriculture to tourism, to mining[4]. The effects of land degradation are expected to accelerate in magnitude as the degree of high-volatility weather systems increase[5].
The Causes and Status of Land Degradation Globally
Erosion takes place when soil is left uncovered and the particles are washed or blown away. Heavy downpours, surface water ponding, intensive land use and mechanical human activities are continuing to reduce top soil – particularly in the most intensively farmed regions. For example, China and India are losing topsoil at three to four times the rate of North America[6]. Land erosion and degradation also occurs due to tillage, deforestation, and an increase in rainfall intensity. One study indicates that there has been a 53 percent increase in the number of extreme rainfall days recorded globally over the past 30 years, thereby leading to record levels of erosion and runoff[7].
In the past 20 years, a greater proportion of rainfall has arrived in the form of extreme single-day weather events than has ever been recorded. Figure 1 demonstrates the percentage of land area in the contiguous United States affected by extreme precipitation in each year as reported by the National Oceanic and Atmospheric Administration. The orange line represents a nine-year trailing average, highlighting a significant fact for soil erosion: the average percentage of US land affected by extreme one-day rain events has increased from 7 percent in the 1970’s to 18 percent in 2015.
Figure 1: Extreme One-Day Weather Events in the Contiguous United States, 1910-2015[8]
Erosion naturally leads to further soil compaction, nutrient degradation and impaired water drainage, which reduces the overall productive capacity of the land. With nearly 60 percent of the world’s farmland considered degraded, our arable land base is steadily declining[9].
Figure 2 demonstrates where the greatest soil erosion concerns are expected to occur in the future based on a detailed joint study by the European Commission and the University of Basel. The R-factor is the rainfall-runoff erosivity factor, or an annual summation of erosion index (EI) values (erosion force of rainfall) in a normal year’s rain.
Figure 2: The Geo-Spatial Pattern of Soil Erosion, 2018[10]
Opportunity Amidst the Loss
As soil degradation increases the scarcity of fertile land, it also creates the need to incorporate sustainable farm management practices and pursue responsible investment goals. Farmland investors and stakeholders should consider five primary categories in their path to mitigate soil erosion effects and potentially reap the upside potential that follows:
1.) Deal Sourcing & Region Identification: Investors should look to identify farming regions with topsoil abundance, low wind and flood risk, and relatively flat or rolling terrain. Investment teams have the responsibility to review an area’s historical and forecasted climatic risks in advance of deal selection. This includes past precipitation and temperature averages, available soil and yield mapping data, historical input usage, previous environmental issues and/or remediation measures. Investors may also want to consider geographic regions that successfully practice no-till land preparation, such as Argentina, Australia, and Canada.
2.) Due Diligence: Most farmland asset managers should be able to leverage geo-spatial information data and measurement tools to determine how past farm imagery compares to the current status of the field. It is also worthwhile to consider warning signs such as noticeable compaction, dispersed ponding, and natural drainage flows.
3.) Sustainable Farm Management Practices: Farm operators have the opportunity to replenish topsoil quality through the implementation of practices such as no-till and low-till farming, as well as the regular use of green manure crops to enhance soil biodiversity, structure, and to replenish nutrients. Further, integrated pest management (IPM) plans leveraging biological and mechanical processes can control pests while reducing chemical pesticide use.
4.) Investment in Loss Prevention & Restoration: Capital expenditure in ditching, tile drainage, external tree-borders, berms, and riparian-buffer maintenance can control soil erosion effects while also mitigating natural disaster risks such as flooding, wind damage, and surface ponding. For permanent and specialty crop strategies, the implementation of technology and products offered by groups like the Land Life Company – a startup that is working to restore ecosystems in degraded soil regions through reforestation efforts – should be considered CapEx well spent.[14]
5.) Long-term Tenure Mindset: Investors who plan to own and/or operate farmland for the long-term will be naturally incentivized to adopt sustainable land management practices which can promote the health and productivity of soil. Farmland owners should be cautious of short-term (less than three year) lease structures which may create the risks of nutrient mining or high-intensity agricultural practices.
With land degradation on the rise, the tools to reduce soil loss and protect these investments are slowly becoming more available and adoptable. As soils from intensive agricultural regions continue to deplete, we hypothesize that land managed with sustainable practices shall prove to be significantly more valuable in the decades to come.
Note: this article first appeared in Global AgInvesting on March 21, 2019 globalaginvesting.com. This is the first article of a series published by GAI News. The eight-part series will examine how the global food system is set to be altered by eight existing trends.
Primary author: Jeremy Stroud, Bonnefield, Agricultural Investment Analyst
Contributing authors: Michael DeSa, AGD Consulting and Solomon Tiruneh, AGD Consulting
It is no secret that our global food system is in a state of flux. In the next century, we will be challenged to produce more food with less land, by fewer farmers, and with increasingly scarce water resources. Although evidence suggests that we as humans have the capacity to achieve this, it is imperative to explore what changes can be expected from the planet’s climatic and demographic variability. The purpose of this article series is to provide insight on these changes and place a spotlight on the regions which may weather the change most effectively. While other parts of the world are projected to experience comparatively strenuous conditions, parts of the Canadian and U.S. agricultural systems are positioned to endure and even prosper in the face of a changing climate and demographic.
A combination of industry and academic literature indicates eight existing trends that are set to alter the structure of our global food system. A growing body of data indicates that these factors may determine our collective success or failure:
1. Urban expansion
2. Land erosion and degradation
3. Fresh water scarcity and agriculture’s reliance on irrigation
4. Increasing temperatures and CO2 levels
5. Volatility of weather systems
6. Global phosphate over-use
7. Bee fatalities and pollination
8. Population growth in proportion to arable land
As with any changing market, structural movements can lead to inefficiencies which are then corrected by the activities of market participants. In this case the global agri-food sector could face extensive resource constraints and shifts in pools of capital over the next half century. This may establish the environment for public and private entities to create efficiencies by allocating capital to new infrastructure projects, accessible financing alternatives, synergistic consolidation, progressive policies, and industry-led innovation.
Let’s start with a topic that is close to many of our homes – urban expansion:
Urban Expansion
It is a modern reality that some of the world’s most fertile soil is now beneath several layers of concrete. Cities were originally established based on their proximity to agriculturally productive land and its strategic significance. As economies continue to shift from rural to urban residency, the world’s major cities naturally expand outwards. Unless geographic or regulatory restrictions exist, cities extend by developing into farmland areas that had historically been the source of their nourishment. Currently, populations in developing economies are urbanizing at a rapid pace with 40 percent of urbanization taking place in developing slums – a trend that is expected to heighten regional socio-economic disparities and sanitary-access concerns. The global urban population is set to increase by 2.5 billion people by 2050, with India, China, and Nigeria accounting for nearly 900 million additional people. Figure 1 highlights the global shift in urban vs. rural populations.
Urban expansion is projected to reduce our global cropland area by 47 million acres between 2015 – 2030, and it is taking place on cropland that is 77 percent more productive than average. This is an especially concerning issue in the developing world where population growth will expand at the highest rate throughout ‘mega-urban’ areas. Nearly 90 percent of the world’s cropland loss due to urban expansion will take place in Asia and Africa. Figure 2 exhibits the fertile areas which will be hit hardest by urban expansion.
Crop growing regions are affected by urbanization to a far lesser extent in countries with dispersed population centers, an abundance of land resources, and proactive land-use regulations, such as in Canada, the U.S., and Australia. In Canada, for example, the Golden Horseshoe Greenbelt and Agricultural Land Reserve Acts collectively protect more than 13 million acres of productive farmland. Although it may make immediate economic sense for cities to develop outwards instead of upwards, natural geographic barriers to urban expansion have contributed to some of the most prosperous and concentrated cities on the planet, such as New York and Singapore. Increased urban density (whether a consequence of necessity or planning) has also been correlated to increased productivity and wages due to the cost savings derived from urban agglomeration.
Urban Expansion and Agricultural Investing
With the emergence of concerns relating to urban expansion and its effects on agriculture, our minds naturally lean towards the merits of indoor farming as a solution to farmland loss. While urban and greenhouse farming projects have developed rapidly due to recent technological advancements and access to venture capital funding, the types of foods grown in enclosed settings are typically exclusive of the grains, oilseeds, pulses, field vegetables, and permanent crops grown on farms. The future of our food system will likely consist of a complementary combination of climate-controlled indoor and traditional outdoor farming methods rather than a slant towards just one. Investments on both sides of the agricultural production spectrum are expected to generate similar risk-adjusted returns over the long term, albeit with differing levels of volatility, asset capital appreciation, cash flows, operational risks, and sensitivity to commodity price fluctuations.
Within the context of global urbanization, farmland located on the perimeter of a growing city will typically command price premiums for development potential. This land is no longer valued for its productive agricultural capacity and would be considered a different investment class altogether. Some of the safest and most fundamentally-sound agricultural investments available are located in close enough proximity to supply growing cities with fresh food, yet far enough away not to have development premiums. These assets naturally lend themselves to the pursuit of sustainable development goals through farmland protection and their function in nourishing a demand-oriented market. Further, they retain logistical and shelf-life efficiency, particularly for direct-to-eat goods. An investment of this type also may be optimized and expanded in the long term to increase economies of scale and capacity for production of different crop types.
As productive crop growing land becomes increasingly scarce over the next century, the significance of fertile land assets have every reason to flourish.
D’Amour et al. (2016). Proceedings of the National Academy of Sciences. Future urban land expansion and implications for global croplands. https://www.pnas.org/content/114/34/8939
When we founded Bonnefield ten years ago, we purposely set out to devise a business model that would create value for our investors by creating value for farmers. We believed then, and believe even more strongly now, that creating value for farmers naturally translates into value creation for our investors whose farmland portfolios we manage; a win-win for both investors and farmers. Value creation for farmers manifests itself in various ways: in financial flexibility, enhanced profitability, improved sustainability, and in contributions to local farm communities across Canada.
We codified our approach in a responsible investing policy (available here) and we actively monitor and track the environmental and social aspects of our investing activities on a property-by-property basis in our annual reports to investors. We have also tried to lead a broader discussion in the Canadian agricultural community on the benefits of responsible investing through public events such as local community town hall meetings, educational conferences, public speaking events, farm tours, documentary sponsorships and by participating in policy discussions with government officials and academics. In 2014, Bonnefield was the first Canadian farmland manager to become a signatory to the UN’s Principles for Responsible Investing.
Given this background, it has been gratifying for us to see evidence of other investors taking a sustainable approach to the agricultural sector. Over the past quarter alone, we have witnessed high-profile momentum in the sustainable agricultural investment space. There appears to be promising action being taken by investors to address some of the long-term sustainability issues facing the world’s food production systems, and we are hopeful that this emerging trend will become a broad movement. Some examples:
A group of influential investors including Bill Gates, Jeff Bezos, Ray Dalio, Richard Branson and Michael Bloomberg collaborated to form an investment fund named Breakthrough Energy Ventures (BEV). The firm offers patient capital to companies with high-impact potential and that aim to solve major, global issues. Last month BEV led an investment round in Pivot Bio, an agricultural company working on nitrogen-fixing microbes aimed at reducing fertilizer use and, thereby, environmental impacts and operating costs for farmers.
Jeremy Grantham’s Environmental Trust also led an investment round in the agricultural space. In October the trust invested in Land Life Company, a technology firm with the aim of reducing global soil degradation. They will continue to work on projects which meet their aims by offering technologies such as autonomous planting, remote sensing and blockchain verification. Grantham, co-founder of the $70 billion investment firm GMO Capital (and who I have frequently quoted in my blog posts), has adamantly expressed the importance of investing in sustainable agriculture as climate change, land scarcity and changing diets in the developing world are projected to threaten our global food system.
These stories are evidence of a growing trend: investors are giving greater consideration to environmental, social and governance (ESG) outcomes of their agriculture investments. According to the latest trends report from the Responsible Investment (RI) Association, more than half of the Canada’s investment industry considers ESG factors in their investment decisions, representing over $2 trillion in assets under management.
Impact investing takes the ESG mandate a step further by promoting investment-specific outcomes within a responsible investing framework. The Responsible Investment Association notes that impact investing in Canada has grown by over 60% (as measured by assets under management) over the past two years alone. Investors visibly aim to make a positive contribution to society while also generating attractive returns. Investors are aligning their portfolios with their values and allocating assets towards social and environmental progress as well as profit.
We are pleased to see that impact investing is being transformed from a soft, fuzzy platitude to its rightful place as a respected core principle of global financial best practices.
Canada’s farmers bring to mind the black knight in Monty Python and The Holy Grail. They keep on fighting despite being thrashed, again and again, by the seemingly endless series of challenges thrown at them over the spring and summer months: extreme weather patterns, NAFTA renegotiations, collateral damage from US-China tariffs, a diplomatic spat with Saudi Arabia and even a bizarre whodunnit relating to genetically modified wheat that mysteriously appeared in Alberta. Many of these issues remain fluid, but here is a brief mid-season summary of where things stand down on the farm:
Weather – No part of the country has had “normal” weather this growing season. The west has struggled with continued dryness all season, Central Canada had a cold wet spring followed by dry, searing heat punctuated with the occasional flooding rain storm, and the Maritimes experienced early season flooding and unseasonable heat over the summer months. Despite these challenges, our property management team reports that, for most Canadian farmers, the crops are looking quite good. Are this summer’s weather patterns an aberration or the new normal caused by climate change? The Economist recently published an excellent article on this debate here.
NAFTA – The ongoing NAFTA re-negotiations have been front-page news for more than a year now, but despite almost 24/7 coverage, no details have been publicly revealed about the potential impacts that a new deal (if any) would have on Canadian farmers. One of President Trump’s favourite objects of scorn is Canada’s supply management system for dairy products. Putting aside the fact that the US also heavily subsidizes its dairy sector, it is likely that any renewed NAFTA will mean changes for Canada’s dairy farmers. Nonetheless, we do not believe these potential changes are a significant risk for Canada’s overall ag sector. Any changes to the current system would likely include generous transition assistance that would limit the impact of any changes for Canada’s dairy farmers. In the long run, we believe that any trade deal that increases Canada’s access to booming world dairy markets, would be a net benefit to Canada’s dairy farmers. Our current supply managed dairy system effectively shuts Canadian farmers out of the strong worldwide demand for dairy products (especially from China), so greater access to world markets would, in the long run, be an opportunity not a threat to Canada’s farmers. An excellent report by Al Mussel of the Agri-Food Policy Institute separates fact from fiction in the dairy dispute and can be found here.
China-US Trade War – Canadian soy farmers have been caught in the crossfire of a tit-for-tat tariff war between China and the US. In early July, China levied a 25% tariff on soy imports from the US. In anticipation of an expected oversupply of US soy on world markets, the price of soy has recently declined to USD$310 per metric ton, from USD$442 per ton in April. The weak Canadian dollar has insulated farmers in this country to a certain extent, but prices are clearly depressed from where they would be in the absence of the trade dispute. Our view is that the market has over reacted and in the long term, if the trade dispute is not resolved, it could represent a significant opportunity for Canadian soy producers. China, the world’s largest soy importer, has an annual shortfall of 90 million tons of soybeans and the U.S. supplies 39% of that shortfall. China, on the other hand represents 62% of US soy exports. Brazil, which recently surpassed the US as the world’s largest soy producer, will be the primary beneficiary of these tariffs. Canadian soy producers, however, are also well positioned to benefit from strengthened export demand. China’s massive appetite for imported soy, leads us to believe that current soy prices are a case of “short-term pain for long-term gain” for Canadian farmers.
Diplomatic dispute with Saudi Arabia – In early August, Saudi Arabia took offence to Twitter posts by the Canadian government that urged the immediate release of human rights activists. The ensuing backlash from Saudi Arabia saw, among other trade-related measures, a ban on imports of Canadian wheat and barley. Despite the publicity Saudi Arabia’s announcements have had, Canadian farmers will not notice much of a change. In 2017, Saudi purchased about 10% of Canadian barley exports – only 134,000 metric tons – and less than 1% of Canadian wheat exports. The volumes of grain impacted by the Saudi ban are not significant and so we do not expect a material impact on Canadian farmers from the Saudi measures.
GMO wheat mystery in Alberta – The most bizarre event to befall Canadian farmers this summer, was the mysterious appearance in July 2017 of an experimental strain of genetically modified wheat in a roadside ditch in Alberta. GMO canola, corn, soy and other crops are commonly grown in Canada and exported abroad, but GMO wheat is not approved for commercial production in Canada (or anywhere else in the world). The wheat was identified after it survived an application of Round Up weed killer and, when the discovery was announced by Canadian Food Inspection Agency (“CFIA”) early this summer, Japan reacted by suspending wheat imports from Canada. Japan buys roughly 1/3rd of all Canadian wheat exports so the implications were serious for Canadian wheat producers. Canadian wheat prices fell as a result. Fortunately, Japan resumed importing Canadian wheat on July 20th after it was shown that GMO strains had not infiltrated our supply channels. But the mystery remains: how did this experimental strain of GMO wheat find its way to a roadside ditch in Alberta? University researchers and the CFIA have reportedly ruled out all plausible explanations, leaving sabotage as the leading theory. Did an anti-GM lobby group or a Russian agent scatter some genetically modified seeds along a roadside, knowing that the discovery would seriously disrupt Canadian wheat exports? According to published reports, both these groups have a history of mischievous activities in modern agriculture systems, so the theory – though it sounds outlandish – is at least plausible. It is unlikely that we will ever know for sure, but the mystery is further investigated by the Globe and Mail here.
On the whole, Canadian farmers seem to be taking all of these short-term irritants in stride. Visits with Bonnefield’s farmers over the summer months have not revealed any serious issues of concern and most remain optimistic for a reasonable harvest over the coming months.
Contrasting this backdrop of short-term challenges are the long-term trends that will continue to benefit Canadian farmers over the coming decades. These realities are pointedly summarized in the latest quarterly commentary from Jeremy Grantham, co-founder of Boston-based GMO, an investment firm with $71 billion in assets. I urge you to read it. His commentary puts into stark perspective the urgent threat climate change and soil erosion pose for the world’s food supply. It also highlights the serious role that we, as both investors and long-term stewards of Canadian farmland, owe to current and future generations. Grantham’s article, available here with a free registration, is a remarkable summary of why we do what we do here at Bonnefield, and why we are so focused on soil health and agrology.